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Two-dimensional integrable potentials with quartic invariants 

&nrge Bnzis 

Department of Theoretical Mechanics, University of Thessaloniki, Greece 

Received 23 September 1991, in final form 18 February 1992 

Abstract. For autonomous two-dimensional conservative dynamical systems we derive four 
necessary and sufficient conditions which the potential function O(x, y )  has to satisfy in 
order that it is integrable with the second constant of motion quartic in the velocity 
components. We also develop the method by means of which we find the quartic invariant 
for a given potential satisfying these conditions. 

Certain degenerate cases leading to pseudo-quartic integrals are discussed. Two 
examples and a counter-example are presented. 

1. Introduction 

A basic result regarding integrability of potentials V ( x ,  y )  for autonomous conservative 
dynamical systems of two degrees of freedom was obtained by Darboux [l]  and was 
reproduced later by Whittaker [2]. It accounts for integrable systems possessing, besides 
the energy integral, a second constant of the motion, quadratic in the velocity com- 
ponents x, 9. Darboux proved that these potentials must satisfy a second-order partial 
differential equation in V ( x ,  y )  which he also solved in terms of two arbitrary functions. 
Certain special cases, omitted by Darboux, were studied much later [31. 

Many papers have appeared recently which face the problem of constructing 
integrable dynamical systems (more often of two degrees of freedom) with a second 
constant which is usually algebraic in the velocity components or, at cases, of other 
prespecified form. A full account of relevant results may be found in a review by 
Hietarinta [4]. However, relatively few concrete results, similar to that of Darboux, 
for algebraic integrals of higher order, are found in the literature. In particular: 

(i) Holt [5] found two nonlinear partial differential equations which the potential 
V ( x ,  y )  has to satisfy so that a second integral, cubic in the momenta, does exist. These 
conditions include, apart from ten constants, an arbitrary function ‘P( V). No general 
solution for these equations is known [51. 

(ii) Considering third and fourth-order invariants and using complex conjugate 
variables, Kaushal et nl [6] derived what they called ‘potential equations’. For the 
case of quartic invariants (which is the subject of the present paper too) the potential 
equation given by Kaushal et al [6] involves potential derivatives up to the fourth 

although this fact is not clearly stated. On the contrary, the authors let the reader 
understand that, if the potential satisfies their condition (equation (3.6), p 423), the 
corresponding integral of motion can be found. As a matter of fact, they have taken 
care of the compatibility conditions for all pertinent coefficients appearing in the fourth 
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and second-order powers of the momenta but not of the (zero order) last coefficient 
a,(x, y) (in our notation: I ( x ,  y)). 

(iii) Fokas and Lagerstrom [71 addressed the problem of integrals of motion at 
most cubic in the momenta. For cubic invariants they found a relation which is linear 
in the derivatives of the potential u p  to the third-order with coefficients which are also 
linear combinations of the coefficients dgk (and their first and second-order derivatives) 
of the corresponding third-order powers in the momenta in the expression of the 
second integral. This relation, however, is a necessary, not sufficient, condition for a 
potential V ( x ,  y )  to admit such an integral of motion. 

(iv) Fordy et al [SI have found some quartic integrals corresponding to qiartic 
potentials with four degrees of freedom. Fordy [9] has also found a second quartic 
for specific values of the HCnon-Heiles model. 

(v) Certain quartic integrals associated with third and fourth-degree polynomial 
potentials were established by Grammaticos et al [lo] who used a direct approach 
combined with PainlevC analysis. Of much interest to the present paper is a statement 
of theirs according to which a quartic integral exists whenever the potential satisfies 
two partial differential equations. One of these equations includes the coefficients 
fo,fi,f2,f3,f4 of the fourth degree in x , y  in the expression of the second integral 
(which are known polynomials). The other relation, however, includes the coefficients 

themselves to non-trivial cases with 1; ( i  = 0, 1, . . , , 4 )  constants. 
(vi) Most of the results known in the literature for higher-order invariants were 

obtained after some sort of restriction made either on the form of the invariant or on 
the form of the potential. Thus, Leach [ll], commenting on a paper by Thompson 
[ l l ] ,  re-examined invariants of the third and fourth-order with a leading term ( y p x -  
xp,)' or (ypx -xP,)~ correspondingly and found the form of the general solution for 
the potential. These results were completed by Sen [ 1 1 1  who found it convenient to 
use polar coordinates. In another paper, Sen [12] changed the ansatz for the nth order 
invariant by considering higher-order terms of the form (xp, -yp,)"-*(p: + p : ) .  For 
n = 3, 4 and 5 he offered, in complex coordinates, conditions for the corresponding 
potential. Very recently Evans [I31 made a search for autonomous Hamiltonians of 
two degrees of freedom admitting a second integral quartic in the momenta with leading 
term (xiyi)/2. He expressed the potential as a sum of four functions U,, u2,  u3, uq and 
reproduced a functional relation between these functions, also given by Hietarinta [4]. 
Some of Evans' results reduce to simpler systems found earlier by Bozis [13] and some 
new integrable systems are found by the method of Lax pairs. 

In the present paper we derive four necessary and sufficient conditions for a potential 
function U ( x , y )  so that it admits an integral of motion quartic in the velocity com- 
ponents. The conditions include the 15 constants associated with quartic integrals [4] 
and derivatives of U ( x ,  y) with respect to x, y up to the fifth order. In fact each 
condition is checked as follows: given a potential function one finds 60 functions Hik' 
( i  = 1 , .  . . ,15)  for k = 1,2 ,3 ,4  corresponding to each condition in terms of the given 
U(x,  y )  and derivatives of it only. In general, if there exist 15 constants c I . .  . . , cis, 

not all zero, such that each sum X;:, cjHik' vanishes identically for k = 1,2 ,3 ,4  then 

At cases, it may be that the above quartic is the square of a quadratic constant, 
other than the energy integral E, but again integrability is established. For central 
potentials, the pseudo-quartic may be simply the fourth power C4 of the angular 
momentum constant C or the constant EC2. 

ofthe second degree (which are nor known): The authors find it convenient to restrict 

U(* p) Is ix:egrab!e axd the cor:espnxding qsartic invariant can be h ind .  
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2. The vanishing Poisson bracket in new variables 

Dealing with autonomous dynamical systems of two degrees of freedom and using a 
new set of variables we derived, in a previous paper [14], an equation equivalent to 
the condition of a vanishing Poisson bracket. The variables used were suggested in 
the light of certain 'inverse problem considerations' and they were more effective in 
handling terms of the same degree in the velocity components appearing in second 
integrals of motion. Indeed, the use of these variables is crucial because it makes the 
lengthy calculations involved in this problem much shorter by reducing the number 
of unknown functions involved [14]. We comment on this point again i n  section 3. 

Suppose that 

d x ,  Y,  x, Y)  = c (1) 

is a second integral of motion, besides the energy integral 

E=f(XZ+j2)- U ( x , y )  

corresponding to the potential function U ( x ,  y ) .  
Let us adopt the notation 

Thus, for instance, U,,= U,, U,, = Uy, U,,  = U,, U,,= Uxyy, etc., where subscripts x, y 
denote partial differentiation. 

We introduce now the following transformation 

(4) 
U , O + Z ~ O I  

112 

x = x  Y =Y x = - & Z (  UI"+ZUO, ) y = & (  

with E = i 1. Then the position coordinates are unaltered, while the velocity components 
x, j are expressed in terms of the new variables z and w, where 

The second integral ( I )  becomes 

w, Y ,  z , w )  = d x ,  Y ,  2, Y) ( 6 )  
and the condition that the Poisson bracket [E, 'p] vanishes along any orbit is now [14] 

(7) zQx-Qy + wQz + O(OL*+ M * ) Q ,  = 0 

with 

3. Fourth-degree integrals of motion 

As an appiication oiiormuia i t )  we shaii study in this paper integrais of motion which 
are polynomials of the fourth degree in the velocity components x, y, i.e. integrals of 
the form 

(9) 'p = Ax4+ BX'y + Cx'y'+ Oxy3+ Ey4+ Fx2+ GXy+ Hy2+ I 
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corresponding to the poteniial function U(x ,  y ) .  The symmetry under time reversal of 
the Hamiltonian requires that ~ ( x ,  y,  x, i )  contains only even powers in the velocity 
components x, y. The nine coefficients appearing in the expression (9) are, in general, 
functions of the position coordinates x, y. 

Transformed to the new variables x, y, z, w, equation (9) becomes 

w , ~ ,  2 , ~ )  = ( ~ , ~ + z r r , , ) ~ f ( x .  y,  z ) w - 2 + ( ~ , 0 +  Z t i d g ( x ,  Y ,  z ) w - ' + r ( x ,  Y )  (IO) 

where 

f ( x ,  y,  Z )  = Az4- Bz3+ CZ'- Dz+ E 

g(x, y,  Z) = F Z ~ -  GZ+ H 

I(X, Y )  = I ( x ,  Y ) .  

( 1 1 0 )  

( 1 l b )  

( 1 l c )  

Function I ( x , y )  remained unaltered, of course. It is also seen that, due to the 
transformation used, the problem of determining the three functions F, G, H (of the 
two variables x, y )  is now replaced by the problem of determining one function g(x, y,  z )  
(of three variables) which, though, is a second-degree polynomial in the independent 
variable z. Something analogous has happened with the five functions A, B, C, 0, E, 
the determination of which now requires the knowledge of the unique function f (x. y, z )  
which is actually a fourth-degree polynomial in z. As a matter of fact it will become 
evident shortly that there is no essential difficulty with the five coefficients A, B, C, 0, E 
which are known to be fourth-degree polynomials in x, y. 

The reasoning now goes as follows: for a given potential function U(x,  y ) ,  function 
@(x, y,  z, w ) ,  given by ( l o ) ,  must satisfy equation (7). Arranging in powers w-2 ,  a-', w o  
of the independent variable w we obtain the following equations correspondingly 

In view of ( I l a ) ,  equation (12 )  gives 

A,=O A, + B, = 0 By+ C, = 0 

C,+D,=O D,+E,=O Ey = 0. 
(15) 

The solution of system ( 1 5 )  is easily found [IO]: 

A= a,y4+a,y3+a,y2+a,y+a, (160)  

B = -x(4a,y3+3a3y2+2a,y+ a , )  + (b3y3+ b2y2+ b l y  + bo) (166)  

C = x2(6a,y2 +3a3y + a2) -x(3b3y2 +2b2y + b,) + (c2y2+ c,y + co) ( 1 6 ~ )  

D = -x3(4a2y+ a,) +x2(3b3y + b,) - x(2c2y + c,)+ ( d , y +  do) ( 1 6 4  

E = aqx' - b3x3 + c2xi- d ,x  + e,, (16e)  

where the 15 constants 

a,, a, ,  a2,  a , ,  a,; b3, b2, b l ,  bo; CZ. C I ,  CO; 4 ,  do; eo (16*) 
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play a significant role in the analysis which follows. With the aid of the above constants 
we shall offer four conditions in order that a given potential function U ( x ,  y )  is 
integrable with a second constant of motion of the form ( 9 ) .  Needless to say that the 
potential to be tested for integrability may generally be brought to a simpler form by 
an appropriate translation and rotation of the axes, as well as by an appropriate 
factorization. 

If we suppose momentarily that function r ( x ,  y )  is known we can find the general 
soiution of ( i 4 j  ior g = pix, y,  2). it is 

where h ( x ,  y )  is an arbitrary function of x ,  y .  Identifying function g(x ,  y ,  z) as given 
by equations (17) and ( l l b )  we can find explicitly the three coefficients F, G, H, 
provided that l ( x ,  y )  exists and is known. 

The question now is: Does function I ( x ,  y )  exist? Besides, if I ( x ,  y )  does exist, 
how can it he found? 

4. Conditions for the existence of the function I ( x , y )  

We shall see that I ( x , y )  must satisfy a system of three linear partial differential 
equations of the second order (equations (19), below). To this end we now make use 
of (13) and insert into it the functions g ( x ,  y ,  z )  and f ( x ,  y ,  2). given respectively by 
equations (17) and ( I l a ) ,  and we arrange in powers of the independent variable z. As 
a result, we obtain, after some straightforward algebra, an algebraic equation of the 
third degree in z. The four coefficients are functions of x, y only and must be identically 
equal to zero. 

The fact that the coefficient of z3 is zero leads to the equation 

h , + 4 A U , o + B U o l = 0 .  (18) 

On !he other hand, the sys!em (e!! i!: system (Si)) d ! h e  three equa!ions, obtained 
from the conditions that the coefficients of z2, z and zn must be equal to zero identically, 
include linearly first and second-order derivatives with respect to x, y of the function 
I ( x ,  y ) .  Solving the system (SJ for I,,, I,, I ,  and taking into account (18), we obtain 
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where we introduced the notation 

Working out the compatibility conditions for equations (19) and replacing second- 
order derivatives in terms of first-order derivatives, we obtain, as expected, an algebraic 
system of two, linear in I,, I,, equations (call it system ( S , ) ) .  

Recall that, up to now, for a given U ( x , y ) ,  function h ( x ,  y)  is only subject to the 
condition ( I Q I  

The calculations which follow become pretty tedious, yet straightforward. They 
were done by a REDUCE program with the 1BM 4381/M13 computer of the University 
of Thessaloniki. Before writing down the system (SI), (which is essentially the system 
of equations (21) below), we offer sufficient explanations regarding the algebra: 

(i) Making use of (15) we replaced the partial derivatives with respect to y of the 
coefficients A, E, C, D by their corresponding x-derivatives of B, C, 0, E. 

(ii) First and second-order derivatives of h ( x ,  y), entering into (S,), were expressed 
in terms of h, and hyy; in other words: we did not allow for derivatives h,, h,, hxy to 
enter into the calculations. The purpose of this practice will become clear in what 
follows. 

Assuming that J # 0 and observing the above prescriptions we solved the system 
( S , )  for I,, I, and we obtained 

I ,  = J-'(K2h,,+ K,h,+ Koh+ K )  

I, = J-'(L2h,+ L,h ,  + L,h + L )  

(21a) 

(216) 

with 

J 3 U,, U12 U3,- 4U02 U,, Um+ U,,  U2oUm+ 3 U,, U,, U21 - 5 Uo, U:,  - 3  Uot U:, 

+ 9 U,, U,, U,, - 6Ull U12 U,,-3 UOI U:, - 4  U &  U21 + 5 Um U2oU21 

+5u:,u2,- Gu2, (22) 

(23a) K2= 3 U,,(3 U12 U:, + 3 U,, U,oU2, - 4 U,, Uo2U11- 5 UIOU:, + Uo, U,,  U201 

K, = uOl(3 uo, &,U,,+ 15 uloul, U,, - 12LI,, u,2u2,- ~ z u ~ ~ u , ~ u ~ ~  + 15 Uo, U,,  U2, 

+ 3 U,, u20u21 - 4u:, U,, + 17 U,, U ,  I U,, -25 U:, - 4 U, I U;,) (236) 

KO= -2Ul0J ( 2 3 ~ )  
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(23d) K = K,,A+ KohB+K,,C+ KOdD+ K,,E + K,,B,+ K,,C,+ K,dD,+ K,,E, 

where 

and 
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where 

L,. = 20 U,, u l u u l l ~ 3  U,, U,, + 3 U,, U12 - 3 U,, U21 -4U:2+ 5 U02U2, - U;,) 

Lub = U:1(-18 U I U ~ I I  u30+ 18 uu2 uu3 U,,+ 33 Um U03 U,, -27 U03 U,, U2u 

+ ~ 0 ~ : " ~ : , ( ~ 2 0 - 4 ~ 0 2 )  (24e) 

+51 ~ l , ~ , ,  U,, - 18 ~O,U,OU2, -33 U01 U,, U21 +27 ~ , O U , O ~ , i , ,  

-44u;,u,, + 55 u,,u,, Uzo- 11 U, ,  U;,) 

+ UOI Uio(12 U02 U,, &0-3 uio 7J20u30+ 15 U,, U,, Uii,, + 6uo2 U,, U,,  

- 2 4 U d 1 2  U?,+ 3 U,oU,, U,, - 24U&+ 66 U& U,, -74 00, U:, 

- 51 U,, U:,+ 41 U:, u2,+9 U&) 

+ 3 U:& U,, U, ,  U12 -4Uo,U,,~2, + ~ 1 0 ~ 2 0 ~ 2 1 -  8 uf U,, 

+ 14 U,, U ,  I U,,- 10 U:, - 3 U,,  Uk,)  (24f) 

L,, = 2 G I ( 3  U,, u,ou3,- 3 UlOU20 U,,+ 12 U,, U", U,, - 12 U,, U03 &0+9 U02 U,, U,, 

-9 UloUj2U20- 12U01 Uo2U2, + 12U0, U20Uzl - 16UL+36 ULUzu 

- 24uO2 u:,+4u:,) + 2 U,, U1,U,,(-1 1 U;,+ IO U,, U,,+ UkJ 

+2u:,(-3 U,, U,,U,, + 3  U,, U20U2, + 5 uu2u:, - 5  U:, U201 (24g) 

LOd = 3 u;1(5 U01 uO2u3U -2 ulOu11 u3U - 5 U03 U20 u30-8 U01 U03 U11 - 5 U01 U02 u12 

-6 UIOUII U12 + 5 U,, U12 u20-5 uu2 U,, U,, + 8 UOI U,, U21 + 5 U ~ o u m U ~ i  

+ 19U&U11 - 30Uo2 U,, U2,+ 11 U,, U:,) 

+ Uo, UioUi i(6 Uio U,, + 47 U02 U,, -23 U,, U201 - 10 u:o'J:i (24h) 

Lo, = 20u:, U,,(-3 U01 u3,+3 U,, u,2+3 u,,u2, - 5 UOlU,, + 5  U,,  U20) 

L,  b = 15 u:,(-3 U &  U,, - 3 U,, u,o u,2 + 3 U:, U,, + 4 U,, U i  + 4 U,, u,o U ,  1 

- 100 U,, U,,  U:, (24i) 

- 5  U,, u02u20- u,ou,, u2u+ U,, u:o) (24J) 

L, ,  =9U:, U,,( U,oU,u-6Uui Cl03 - 7 U,uU,2+6Um U21 +SU& - lOUu2U2d2 U & )  

+ 3 U,, U:@ uo2 U ,  I - 11 U, ,  u20) + 3 U : Q ( ~  U:, -3 UQI U,,) ( 2 4 ~  

L,d = 3 U&(-3 U,,,U,,- 12U,, U,, -9Ul0Ul2+ 12U,, U21 + ~ ~ U & - ~ O U O ~ U ~ O + ~ U : O )  

+ 3  U:, U,d3 U,OU2, + 11 uo,u,, + U,,  U2") - 15 U,, u:uG, (241) 

L, ,  = 15u:,(-3 U,, u3,+3 U,, u,2+3 U,,U2, - 5 UU,U,, + 5  U11 U2U) 

-75LI;] LIjoLlf;. (24m) 

From now on, for any given potential function U ( &  y), apart from the function J, 
we shall consider as known functions all the K s  and Ls subscripted by  a number or 
by a number and a letter. 
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The aim of the present section is to write down the conditions for the existence of 
the function I ( x ,  y ) .  To this end, certain new functions, denoted by M subscripted by 
a number or by a pair of a number and a letter will be defined. They will be expressed 
in terms of J and the 26 functions K and L and derivatives of these. 

Suppose then for the moment that, apart from U(x,  y) ,  we were given 'appropriate' 
values of the 15 constants (16*) as well as an 'arbitrary function' h ( x , y )  (satisfying, 
of course, equation (18)). so that the system (21) admitted of a solution which also 
was in agreement with all equations (19). In  this case, U(x, y )  would be integrable 
and the corresponding constant of motion could be found. Indeed, function g(x, y ,  I) 
would be known from equation (17). The three coefficients F, G, H could be found 
immediately from equation ( l lb ) ,  the coefficients A, 5, C, D, E would be known from 
(16), so the integral (9) could be written down. 

So we focus our attention on the system (21) from which we expect to complete 
our information regarding the arbitrary function h(x; y). The necessary and sufficient 
condition for this system to admit of a solution leads to the condition 

M3 hy,,y + M2 h, + Mi hy = M ( 2 5 )  

where 

M = L,J -U,+J ,K-JK,+J(L ,h ,+L ,h ,+  Lob,) (26) 

and M,, M z ,  M ,  are given in the appendix. 
In what follows we shall use successively the functions 

M, N, P,  Q and R(k' ( k  = 1,2,3,4) (27) 

all having numbers or numbers and letters as indices. They are all given in turn in the 
appendix. 

Comments. (i) The coefficients M,, M 2 ,  M, are not given explicitlyin terms of U, but 
in terms of the basic functions J ;  K 2 ,  K , ,  L,, L,  and partial derivatives of these. It is 
easy to see, however, that these coefficients are again homogeneous polynomials in 
Ug, including derivatives of U ( x ,  y )  up to fourth order. 

(ii) In applying the integrability condition to the equations (21) one would normally 
expect a term Mnh to he present in the left-hand side of (25). However it  so happens 
(and this is easy to show) that the coefficient 

MO = (KO," - Lox) J + LJ, - KJ, 

of h in (25) is identically equal to zero. This is, of course, a happy coincidence, 
simplifying considerably the calculations which follow. .. . we now wriie equation (26) as foiiows 

M = M o . A + M o b B + M o , C + M o ~ D + M ~ , E + M , ~ B , +  M,,C, 

+ MIdD, + M j A  + M d L  + M2,DXA + M&x.T. (28) 

The coefficients MO.,, . , , , M2e are given in the appendix. The above equation is a 
typical expansion of M in  terms of the polynomials (16) and derivatives of these with 
respect to  x. We have already used such expansions for K and L i n  (23d)  and (24d). 
In the sequel we shall be using such typical expansions of the functions N, P, Q also. 
It is only at the end of the analysis that we shall introduce, instead of the polynomials 
(16), the 15 constants (16*) of the problem. 
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In conclusion, we proved in this section that I (x ,  y )  needed for the construction 
of the constant (9), must be found from system (21), provided that the arbitrary function 
h(x, y )  satisfies, for a given U ( x ,  y ) ,  conditions (25) and (18). Not to be forgotten, 
however, is that appropriate functions I ( x , y )  and h(x, y )  satisfying all equations (19) 
should exist so that the system is integrable. The question then is: Is the solution 
I ( x , y )  of (21) good for this purpose? For an affirmative answer three additional 
conditions should be imposed on h(x ,  y ) .  

5. A system of equations for the function h(x ,y )  

We now insert I,, I,, given by (21), into equation (19a) and, making use of (18). we 
obtain 

N2 h, + N ,  h, = N (29) 

where N is expanded like M in (28) and the functions N 2 .  N, as well as No., . . . , N2* 
are given in the appendix. 

Next we insert (21) into (196). Again taking into account (18) we find 

- D ~ h  2’% + D  1 I’.Y h = ~ 1 D (30) 

where P has a typical expansion similar to (28) and the functions P2, P,; Po., . . . , P2, 
are given in the appendix. Finally we insert (21) into (19c) and obtain 

with an expansion of Q of the form (28) and Q,, Q 2 ,  Q1;  Q,,., . . . , Q2<,  all given in 
the appendix. 

Thus the arbitrary function h(x ,  y )  has to satisfy five equations which we now bring 
together 

h,=-4AUI , -BUo,  (32a) 

(325) X2;iyy i N, ;iy = N 

M ,  h ,  i M2h, + M ,  h, = M (32d) 

Q3hyyy+Q>hpy+Q,hy=Q. 

If, for a given U ( x , y ) ,  we can find 15 constants (16*), not all zero, such that the 
system (32) is compatible for h = h(x, y ) .  then U ( x ,  y )  is integrable, admitting a quartic 
of the form (9) which can be constructed by finding successively the functions h(x ,  y ) ,  
I ( x , y )  and g ( x , y ,  z) .  the existence of which is guaranteed. 

There are several ways of facing a problem like the above, i.e. finding conditions 
on U, under which the system (32) is compatible. In fact, it may be that various 
treatments lead to different-looking sets of conditions, at least at first sight. We shall 
write down four conditions on U, and give a formula for h, in terms of U,. This 
formula for hy, combined with (32a). then serves to determine h(x, y )  up to an additive 
constant. 
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6. Compatibility conditions for the existence of h(x ,y )  

The necessary and sufficient conditions (equations (38 )  below, for k = 1 , 2 , 3 , 4 )  for 
the system ( 3 2 )  to be compatible are obtained by assuming that certain denominators 
appearing in the analysis are not zero. The special cases of having any of these 
denominators equal to zero are commented upon at the end of this section. 

Let us then introduce 

S = P 2 N , - P , N 2  ( 3 3 )  

assume that 

S#O 
and solve ( 3 2 6 ) ,  (32c )  for h,, h,. 

M,#O Q , # O  

Assuming Further that 

we rewrite the system (32 )  as follows 

h, = -4AU10-  SUO, 

( 3 4 )  

(35 )  

( 3 6 6 )  

( 3 6 ~ )  

( 3 6 4  

( 3 6 ~ )  

1 
6 

1 
6 

h, =- (P2N - N 2 P )  

h,  =- ( N I P -  P I N )  

h w  = 

h =- [ S Q  + ( Q I  Nz - Qz N I  ) P  + ( Q ~ P I  - Q I  P2) NI.  

[SM +(MI N2-  M 2 N I ) P  + ( M2PI - M , P , ) N ]  
0 1 Y 1 )  

1 
’’’ SQ, 

We seek the necessary and sufficient conditions so that the above system (36) .  
which is equivalent to (32 ) ,  is compatible. Among the various ways of establishing this 
compatibility we proceed in four steps by making compatible 

(i) ( 3 6 a )  and ( 3 6 b )  (ii) ( 3 6 6 )  and ( 3 6 c )  

(iii) (36c )  and ( 3 6 d )  (iv) ( 3 6 d )  and (36e )  

As we work out each of the above four steps we obtain four conditions for the 
potential function U(x, y ) ,  including only the 15 constants (16*) .  These U-conditions 
are in turn (for k = i ,  2, j , 4 j  of the typicai form 

R ~ A +  R ~ * , ) B +  R L ~ I c  + RL:ID+ R::,)E + R$,’B,+ R\X, IC ,  

+R~*~D,+RIX, )E,+R!X,~C,+R:*:D,+R:X, )E, ,  
+ R$~D,,, + R $ X , ) E , ,  = o (37 )  

where all the coefficients R‘” ( k  = 1 , 2 , 3 , 4 )  are given in the appendix. If adequate 
polynomials ( 1 6 )  exist such that the four conditions ( 3 7 )  are satisfied and if the 
inequalities ( 3 4 )  and (35 )  are satisfied then the system (32 )  does have a solution which 
can be found from ( 3 2 a )  and (326) .  The additive constant appearing in h ( x , y )  may 
be taken equal to zero as explained in section 8. 
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Comment. If 6 = 0 ,  then, for the system of (32b) ,  (32c) to admit of a solution, we must 
have PIN - NIP = 0 which is itself a U-condition. Thus, at the expense of disregarding 
one of the above two equations, we gain a U-condition of the form (37). There will 
be another three conditions from the remaining equations (32).  If P I N - N , P = O  
happens to be an identity then, of course, (32b) and (32c) are identical and the 
U-conditions are reduced to three. 

The same reasoning is good for M3 = 0 or Q, = 0. We shall give no additional details 
for these speciai cases, which can be studied separateiy ifthey arise. it IS clear, however, 
that there is no way to know in advance if functions U ( x , y )  satisfying, for instance, 
M ,  = 0 are integrable with a quartic integral. 

7. Integrability conditions for the function U(x ,  y )  

At a final stage, in view of (16) ,  we write the four conditions (37) for k = 1,2,3,4, 
found in section 6 as linear expressions of the 15 constants (16*) with coefficients 
which depend merely on the derivatives U,, with i + j S 5 .  We then obtain four 
expressions of the form: 

Ay’o,+ A$h’a ,+Ay’a2+A~’a ,  +Ag’ao+ B:*’b,+ Bih’b2+ Bih’b, + Bbh’bo+ C“’ 2 c2 
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C ‘ , ” ’ = ( y R ~ ~ ’ - x R b L , ’ ) - R I ~ ’  (39k) 

(391) cik) = R(kJ 
O r  

(39n) ~ h k )  = R(k1 
Od 

= R‘kJ 
o e .  (390) 

Equations (38) for k = 1 , 2 , 3 , 4  constitute our final result. They include the 15 
constants (la*) and derivatives U, ( i + j  s 5 )  with respect to x, y of the given potential 
function U ( x ,  y ) ,  up to the fifth order. They have been derived and they stand for the 
necessary and sufficient conditions for the existence of the arbitrary function h(x ,  y )  
which first appeared in the general solution (17) of the differential equation (14). Not 
to be forgotten, of course, is that the four equations (37) have been derived for 

J # O  S # O  M 3 # 0  Q3 # 0. (40) 

The case J = 0 is discussed in section 10. For J # 0, even if one of S, M 3 ,  Q, vanishes 
there can he found four conditions of the form (38). Equations (39) will still be valid 
but the functions Rh:’. . . RiZ’ for k = 1 , 2 , 3 , 4  are no longer those given in the appendix 
but they have to be found according to the specific circumstance. 

Thus we state our final conclusion. 

Theorem. If (apart from the exception discussed in section 9), for a given potential 
function U satisfying the inequalities (40), there exist 15 constants (16*) not all zero, 
such that the four equations (38) are satisfied for k =  1 ,2 ,3 ,4 ,  then the potential 
function U is integrable. 

Apart from certain exceptional cases which correspond to the existence of the 
first-order integral of angular momentum (not to mention of course the quite degenerate 
cases accounting for constant momentum along a certain direction) and which are 
discussed in section 9, the integral is a genuine fourth-order algebraic constant of 
motion and it can be constructed by tracing back the steps of the anaiysis presented 
in this paper, as explained in the next section. 

8. Summary of the algorithm-construction of the integral 

To test for integrability, of the sort discussed in this paper, a given potential function 
U(x, y )  we proceed as follows: 

( i )  We calculate J from (22) and all the functions K and L from (23) and (24). 
(ii) We prepare the functions p , ,  p,, p4 given by (20a) ,  (20c) and (20d). (The 

functions p2 and p5 are not needed; they were factoring h in (196) and (19c) and h 
itself does not appear in the typical expansions.) 

(iii) From ?he appendix we calculate all the functions M; N; P; Q. 
(iv) We no longer need J and the functions K and L. In terms of M, N, P, Q we 

prepare all the functions R‘k’ for k = 1,2 ,3 ,4 .  They are all given in the appendix. The 
functions S,, S , ,  S , ,  6 ,  and A , ,  A > ,  A , ,  A4,  needed for the calculation of the R‘k’s, are 
given in the proper place. The function S is given by (33). 
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(v) Finally we find from equations (39), for k =  1,2 ,3 ,4 ,  the 60 functions 
Aik), AY', . . . , EX' and apply the theorem of section 7. It is an easy task to find the 
15 constants u4, a,, . . . ,eo for which each condition (38) is satisfied or to conclude 
that such constants (not all zero) d o  not exist. 

Exceptional cases are to be treated accordingly, as described in section 6 ( S =  
0, M ,  = 0, Q, = 0) and in section 10 ( J  = 0). 

Having fixed the values of the constants we proceed to the construction of the 

(vi) We find, from (36a), (36b), the function 
:..mnml ,.t- ...,.ti,." 
" 1 L b b .  -1 "1 LII"I."II. 

h(x,y)=ho(x,y)+c.  (41) 
It can be shown that the additive constant c in (41) results in an extra term 

(vii) Using h = h,(x, y )  we determine I ( x ,  y )  from (21), up to an additive constant, 

(viii) Finally, the coefficients F, G, H in (9) are found from (17) and ( l lb ) .  They 

C ( ~ ~ + ) ; ~ ) - ~ C U = ~ C E  to be added to the integral (9). So we put c=O. 

which again may be put equal to zero. 

are 

F = h o ( x , ~ )  ( 4 2 ~ )  

(42b) 
1 

G =  -- (2U1,h,+ 1;) 
U0 I 

9. Degenerate case-nme identities 

We mentioned already that the theorem stated at the end of section 7 is valid, apart 
from an exception. The obvious exception refers to the case of taking as 'second' 
integral the expression 

(43) 
ir:ejquaieofihei-onjia~jii;E = A 2 + ~ 2 - ~ ~ ; ~ ~ ~ ~ r : y ~ q u a ~ 0 ~ ~ 2 ~ , ~ , ~ ~ ~ 0 i i ~ s ~ ~ ~ ~ ~  

$0 = 14+ 2xZy2+);4- 4ux2 -4uy2+ 4u2 

to A = 1, B = 0, C = 2, D = 0, E = 1 or, in terms of the constants (16*), to a, = 1, co = 
2, eo= 1 (or multiples of this triplet) and all the 12 other constants equal to zero. 

It can be shown by direct calculations, that Aik'+2Cik'+Eik' is identically equal 
to zero, or that 

R ~ ~ ' + 2 R ~ ' + R ~ ~ ' =  0 ( k  = 1,2,3,4)  (44) 

for all potentials but this, of course, does not imply that the given potential is integrable. 
Apart from (44), other identities relating the functions used in this paper can be 

obtained. Thus, for instance, we can identify (43) with (9) for g(x, y ,  z )  = -4Uz2-4U. 
In view of (17) we then have h = - 4 U  and, from equations (21), we obtain the identities 

(45a) 

(4%) 

4Uo2K2+4Uol Ki = Ko. + 2K0, + Km 

4 UO2L, +4uo, i, = Lo. +2& + io.. 
The theorem of section 7 is also applicable for potentials associated with integrals 

of the first or of the second-degree in the velocity components. The integrals so detected 
are then pseudo-quartics. 
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We examine now very briefly two degenerate cases, both referring to a central field 

U =  U ( r )  r = ( x 2 + y 2 ) ” * .  (46) 

(i) Since the angular momentum C = xy -x$ is constant, rp = (xy - ~ 4 i ) ~  is also an  
integral of motion corresponding to a4= 1 and all the remaining 14 constants (16*) 
equal to zero. Then 

Aik’=O (47) 

for k =  1,2,3,4 and this can he checked to be true for all potentials of the form (46). 
So for a, = 1 and the remaining constants zero the theorem asserts the existence of 

the angular momentum, not of a genuine quartic. Could it he that for non-central 
potentials we find genuine quartics with a4 = 1 and zero all the other constants? The 
answer to this question is not affirmative and this was shown by Leach [ l l ]  also. 

i j  
constants (16*). From (42) we obtain 

(48 ) 

(ii) Tie ‘quaT~~c’ ~ = 2EC2, cortespon~s io U~ = i ,  e2 = i and the 

~ $ k l +  cl*) - 
2 - 0  

for all potentials of the form (46). 
In the same manner one could apply the theorem for other pseudo-quartics like 

rp = C4+ C2,  ‘p = 2EC2+ C4, etc. hut, of course, there is nothing more to it except for 
checking the correctness of the basic functions K and L of this paper. 

10. The case J = O  

Up to now we have assumed that J # 0. Some special cases, commented at the end of 
section 6, did not call for essential alteration of the method. However, if J = O ,  the 
method developed in this paper does not work. Since for J = 0 both KO and Lo vanish, 
from equations (21) it is seen that we must have in this case 

K,h, + K ,  h, + K = O  

L,h,, + L,  h, + L = 0 

hut I,, Iy become indeterminate. 
To examine this case separately we define 

S * =  L ,K ,  - L,K2  

and distinguish two subcases: 

Case (i)  

S * # O .  

The arbitrary function h ( x ,  y )  has to satisfy the following conditions: 

h, = -4AUlo- SUO, 

hy = 7 ( K 2 L -  L 2 K )  
1 

8 

1 
6* 

h, =- ( L , K  - K ,  L) .  



3344 G Boris 

The system (52) is of the same type as the system of the three equations 
(36a), (36b). (36c). Exact correspondence is established if we set 

in which case 

(53b) 

To make compatible the system (52) we repeat the first two steps (i) and (ii) 
described in section 6. We then obtain two conditions of the form (37) for k = 1,2. 
Therefore the theorem of section I must be checked only for k = 1 and k = 2. The 
coefficients Ai”, ..., E r ’  ( k =  1,2) are again given by (39) and the functions 
R i t ’ .  . . R!:’ are to be taken from the appendix for k = 1,2,  with the provision of the 
correspondence established by (53). 

8 + a*, 

Case (ii) 

s* = 0. 

Then 

K 2 L - L 2 K = 0  

(54) 

( 5 5 )  

and the two equations (49) are identical. We find h(x,y) from (5211) and one of 
equations (49), say (49a). As to the function I ( x , y ) ,  it will be found from (19). In 
fact the second example in section 11 falls into this case and will be treated in some 
detail. 

11. Examples 

We shall apply the theorem of section 7 in three examples: the first, for J # 0, leads 
to a genuine quartic integral of motion; the second, for J = 0, leads to a quadratic 
integrai; the third stands ior a counterexampie. i h e  caicuiations were performed by 
a REDUCE program, available in the IBM 4381/M13 computer of the University of 
Thessaloniki: 

(a) The integrable potential function 

U = - U x 3  3 - xy2 (56) 

is given by Hiertarinta [4]. To establish the integrability of (56) with the aid of the 
theorem of this paper we follow the steps (i)-(v) summarized in section 8. Since 

J = -1200xy # 0 

S = 82944 x lo7 xsy6( S46x2 - 29y2) # 0 

M ,  = 144x 10’ x2y4( lox2 +y2) # 0 

Q , = ~ x  1 0 3 ~ y 3 ( i i 2 ~ 4 + i 4 ~ 2 y 2 + ~ 4 ) # ~  

are all different from zero, the theorem is applicable as it stands. Also, since Ebk’=O 
for k = 1,2,3,4,  we conclude that (56) is integrable, admitting a genuine quartic with 
eo= 1 and all the other constants (16*) zero. 
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Having proved that the potential function (56) is integrable we now proceed to  
find the corresponding quartic integral. To this end we follow the steps (vi)-(viii) of 
section 8. With 

A = B = ~ = A = o  E = l  

we find 

ho=O 

I = - *  2 4 
3x Y -ay6 

and 

F=O G=-! IY 3 H = 4xy2, 

Thus the integral (9) is written as 
2 . 1  4 z 4 2 6 +l=j4-4y’Xj+4xy y --jx y -qy . 

(b) As a second example we take 

U = 2 sin x sin y .  (57) 
We shall see how the theory developed in this paper can detect the fact that (57) is 
integrable, admitting a pseudo-quartic constant of motion. 

We first obtain from (22)  J = 0. We understand that the theorem of section I is not 
applicable as it stands and the case must be handled according to section 10. From 
(50)  we find that S * = O ,  so we are in case (ii) of section 10 and proceed as follows: 
we check that K’L- L2K = O  for any values of the constants (16*). We then have to 
find if, for adequate constants (16*), there exists a function h(x ,  y )  satisfying equations 
(52a)  and (49a), which, for (57), are written as follows: 

b 
h,=-4AU,o-BUol ( s s a )  

3 cos x sin y cosy h,? +cos x h, 

= -6  cos’ x sin y (  1 +cos’ y ) B  - 4  cos’ x sin y cos’ y D 

-40 sin x cos x cos3 y E +6 cos’x sin’ y cos y C, 
-6 sin x cos x sin y cos2 y D, -30 sin’ x cos3 y E,. (586) 

Since C is absent from both equations (58) we set 

A = B = A = E = O  C = l  (59) 
(i.e. c o = l  and the remaining constants (16*) zero) and observe that (58) has the 
obvious solution h = 0. 

Integrability will be made sure if, for h =0, we manage to find a solution of the 
system (19), which, for the case at hand, is 

I,, = - 1, + 8 sin’ x cos2 y (60a)  
cos x 
sin x 

I = - ( 3  sin’ x+cos2 x)  sin y cos x 
3 sin x 

I ,  +- I, + 8 sin x cos x sin y cos y 
3 sin2 x cos y ’y 

ij x - - c u ~ 2  A y )  cos 
1.. IYY = 3 sin3 x cos2 y 

( cos’ x - 3 sin’ x) sin y 
3 sin’ x cosy  

+ Iy + 8  cos’ x sin2 y.  
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Solving (60n) for I, we obtain 

2 I, = C(y)  sin x - 8 sin x cos x cos y 

where C(y)  is an arbitrary function of y. Inserting (61a), into (606) we find 

3 sin' x (3s in2x+cos2x)s iny  
C(y) -8cos2xs inycosy .  

cos x cos y l y=-  C(Y)+ cos x 

The compatibility condition for (61) determines 

C(y)  = CO cosy 

where CO is a constant. It is easily shown that 

I = - c o c o s x c o s  y + 4 c 0 s ~ x c 0 s 2 4  

found from (61), satisfies also equation (60c). From (17) we find, in view of (59) and 
(63), 

z 

and from (1 1 b )  

H = O .  (64) 
CO 
2 

G = --+4 COS x COS y F=O 

In view of (59) ,  (64) and (63) we write the second integral (9) 

rp = x y + 4  cos x cos y x j + 4  cos2 x cos2 y -$C0(xy+2 cos x cosy). (65) 

The constant CO in (65) is actually superfluous. It is easily seen that (65) is a pseudo- 
quartic expressing the constancy of 

$0; = X j + 2  COS x COS y 

because 

rp=rp:-tcorp2. 

(c) As a counter-example we take 

U = x ey. 

We find 

J = 2 8 = 48 el4' M ,  = -6y Q,=-Ne'" 

all different from zero. Applying the theorem for k = 1 and ordering the result in powers 
of x.y we find very easily that (38) is satisfied only if all the 15 constants (16*) are 
zero. There is no need to check (38) for k = 2, 3 or 4. The potential function (66) does 
not accept an algebraic integral of the fourth (or second or first) degree in the velocity 
components. 



ZD integrable potentials with quartic invariants 3347 

12. Concluding remarks 

We found, in Cartesian coordinates, four necessary and sufficient conditions so that 
a given potential function U ( x , y )  admits an integral of motion quartic or pseudo- 
quartic in the velocity components x, y. The theorem requires the evaluation of the 
4 x 15 = 60 functions 

A$*’ AY’ Aik’ A(kJ AFJ 
B p  B p  B p  BLkJ 

Cik)  C$*’ Chk’ 

D(kl I Dhk’ 

E Lk) (67) 
for k = 1,2,3,4. These functions are all calculated in terms of partial derivatives U, 
of U(x,  y) up to the fifth order. The calculation is straightforward, although very 
lengthy. It is not advisible to go into this task without the aid of a computer. 

In the general case one assumes that the inequalities (40) are satisfied. If and only 
if there exist 15 constants (16*), not all zero (and not the triplet a ,=1,co=2,eo=l  
with the other 12 constant zero) such that each expression of the form (38) vanishes 
identically, the given potential accepts a quartic or pseudo-quartic integral. 

The theorem is directly informative in cases like the first example in section 11, 
i.e. if, for the given U ( x ,  y ) ,  one of the coefficients (67), say E,, is identically zero for 
all values of k = 1,2,3,4. If this is not the case, it is suggested that the theorem be 
applied only for one k, say k = 1, and try to find non-zero 15-ples ( a 4 ,  a 3 , .  . . , eo), if 
they exist. Ordering in powers of x, y makes this task very easy. In general the answer 
will be negative and this suffices to establish non-integrability of the sort studied in 
this paper. If, however, we do find non-zero constants (16*) satisfying the theorem for 
k = 1, then we can use these constants and check the remaining three conditions. 

In the case of the counter-example we noticed that ELz’=O, but EP’tO and the 
case was characterized as non-integrable. The theorem can also detect integrability 
associated with quadratic integrals and, in this sense, it is a generalization of the well 
known result due to Darboux [ 1,2]. Of course, in the case of quadratics, the condition 
is jtts: one (not fwx) and :he co::espondicg paha! diEeren:ia! equa:io:: is of the 
second order and, what is most important, its general solution is available. The present 
theorem is good for checking possible integrability and, of course, the general solution 
for U(x,  y) is not known. 

Although not attempted in this paper the theorem may be used for searching for 
potentials of a certain type (e.g. polynomials of a certain degree) associated with 
quartics. This is easier for quartics of a more specific form as for instance, those 
including only one (out of the five) term of the fourth degree, e.g. the form studied 
recently by Evans [13] and earlier by Bozis [I]  with xzy2 factored by a constant. 

Appendix 

in iefmS of ; and aii ihe basic fuiii-iioiis K an: L w e  fiiSi piepaie the f u n c ~ ~ o n s ,  

M, N, P, Q. They are: 
M ,  = K,J 
M ,  = ( K ,  - Lt, + Ki- , )J  + LcJx - Ki Jy (for i = 2  and i = l )  
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Mo.=J,Ko.-JKo.,-J,Lo.+ JLoex-4J(Ui2L2+ UiiL,+ UioLo) 

Mob=J,Kob-JKob,-JxLob+JLoDx-J( Uo,L2+ UmLi+ UoiLo) 

MO. =JyKo, -JKo, -J&, + JLom (for s = c , d , e )  

Mib = J,Kib -JKiby -J,Lib + JLibx + J (  KO. + Lob) +4J(2 U,iL2+ U,&,) 

M i c =  JYKic-  J K B ~ ~ - J J ~ ~ +  Jb,+ J(Kob+ Loc)+ J(2Uo2L2+ UoiLi) 

Ma5= JyK,s -JKi~y-JxLis+ JLisx+ J(Ko7*+Lo,) 

(for s = d, e and s* = c, d correspondingly) 

Mzc= J(K,b+ Li,)-4JU& 

M2d = J ( K , c +  Lid)-JUo,L2 

M2e = J ( K , d  + Lie) 

N2 = -JK2x + JxK, + JK2( U ,  I /  Uoi) 

N ,  = -JK,,+ J,K,+ JK,( Ul1/ UOd+ J2UoI 

No. = JK0.x - JxKoa - JKoo( Uit/ U O I ) - ~ J ( K ~  Un+ K ,  uii + K&-8J2U:o 

Noh = J&x - JxKob -JKob( ui I /  UOI) - J (  K2 Uo, + Kt U02 + KO Uoi) - 5 J 2  Uoi Uio 

No< = JKocx - J X o ,  - JKoc( U,,/ UOI) -2J2  U &  

Nos - JK,,,-J,Ko,-JKo.(Uii/U,,) (for s = d, e )  

N i b  = JKibx - JxKib-  J((ut,/ Uoi)Kib-Koh) + ~ J ( ~ K ~ U I I  + K I  uio) 

NI,= J K I ~ - J . X I ~ - J ( ( L ' I I /  uoi)Kic-&c)+ J ( ~ K ~ U ~ ~ + K I  &I) 

NI,= JKisx- JxKis-J((Uii /  Uoi)Kiv-Kos) (for s = d, e )  

NIc = JK,, - 4JK2 Ulo 

N2d = JK,, - JK2UoI 

N2* = JK,,. 

With pLI given by (20a)  we find 

PI= ( P I K ~ - L ~ ~ ) J +  L d J ,  + ( U i d 3  uoi)J) 

P, = ( ~ i K i - L i x ) J +  Li(J,+( Uii /3Uoi)J)-  J2uio 

Po. = - ( P I K O ~  - Lo.,)J - Loa(Jx + ( U,t /3  Uoi)J)  -4J(  U I ~ L ~ +  U i i L  + U,oLo) 

POD = - ( P I &  -Lo,)J-Loh(J,+(u,,/3Uo,)J) - J (  uo~L,+ uo,L,+ uo&o)-J2~:~ 
Po, = - ( p i K o c  -Locx)J-Loc(Jx + ( UiJ3 Uo,)J) -2J2um UN 
Pod = -(Pi&d -Lwr)J-Lod(Jx+ ( u1d3 uo,)J)-2J2u& 
Po, = - ( P )  Koe - Loex) J - Loe ( J x  + ( U ,  1/3 U,,) J )  

Plb= - ( P ~ K ~ ~ - L ~ ~ - L ~ ~ ) J - L ~ ~ ( J ~ + ( U I ~ / ~ U O I ) J ) + ~ J ( ~ ~ I I L I + U , O L I )  

Pi, = - ( ~ i K i <  -L icx-  Loc)J - LiC(Jx + (U1,/3 Uoi)J) + J(2UmL2+ U O I L I )  
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PI, = - ( P I K I ~  -L i rx -  Lo,)J- Li,(J, + (U1,/3 Un,)J) 
P2, = JL~,-4JUloL2 

P2d = JLld - JU,, L2 

P2. = JL,,. 

With p 3 ,  /.L~ given by (20cf,  ( 2 0 d )  we find 

Q, = L2J 

Q2= J(&+ L I )  - I & -  J ( P , K ~ + I L A )  

Q I  = J(L,y+Lo)-J&i - J ( P ~ K , + I L ~ L , ) - J ' ( U : ~ /  Uni) 

Qoa =(PO% +l*3Kou)J+LouJy-JLoaY 

Qob =(P&b fP3Kob)JfLobJy -JLoby + J 2 (  U:o/ &I)  

Qoc = ( ~ & r +  ~ 3 K n ~ ) J f  LocJy - JLo, +2J2UL 

Q o ~  = ( P ~ L , ~ + P ~ K o ~ ) J + L o ~ ~ J ~ - J L D ~ ~ + ~ J ~ U ~ , U U I ~  

Que = ( P L ~ L , , + P ~ K ~ , ) J + ~ ~ , J ~ - J L ~ , ~ + ~ J ~ U ~ ~  

(for s = d, e )  

A -,.. r L . . V \ , i ,  r r , .  - r  , 
Y l r  - 1 p 4 L I r  T P 3 A l r J J  T L l r J y  - J 1 b l s y  -&Os*) 

(for s = b, c, d, e and s* = a,  b, c, d correspondingly). 

(for s = c, d, e and s* = b, c, d correspondingly). Q21 = JLiS* 

we need 8, as given by ( 3 3 ) ,  and also 
We no longer need J and the functions K and L. To find the functions R for k = 1 

S, = SP,, - S,P, S2=SN2,-SxN2.  

Then 
R ( " -  S nr - I No. - S2Pn. + SiPZNn., - N ~ P o a x )  + 4S2 U , ,  

R ~ ~ = ~ , N , ~ - ~ ~ P ~ ~ + ~ ( P ~ N ~ , , - N , P , ~ ~ ) + S ~ U ~ ~  

Rb:'=S,N,,-G,P,+S(P,N,, ,-  N2Pn,,) (for s = c, d, e )  

R:ld = 61 Nib - 62pib + S[p2( Nib, + Nob) - N,(P, ,  f POb)] -4S2 u,o 
R::) = & N , ,  -&Pi,+ S[f'2(Ntcx+ Not)- NdPicx + P o c ) l -  S2Um 

R:: '=S,N, ,  - S ~ P , , + S [ P ~ ( N , , , + N ~ , ) - N Z ( P , . ~ ~ + P " , ) I  (for s = d , e )  

R"'- 2 s  - S1N2, -S,P~,+S[P,(N,, ,+NI,)-N~(P~,,+ P I , ) ]  

~1:'= s(P,N,,  - N,P,,) 

To find the functions R for k = 2 we introduce 

(for s = c, d, e )  

(for s = d, e ) .  

6, = SP2, - 8yP2+ SP, 6, = SN2, - SyN,+ SN, .  

Then 

Rb:' = &,No, - SJ'o, + SiPzNo, - NJ'osy) (for s = a, b, c, d, e )  
R'2'- Is -SIN, ,  -SJ'., +S[P2(Ni,-Nns.)-N2(Pi,-Pos*)1 

(for s = b, c, d, e and s* = a ,  b, c, d correspondingly) 



References 

[ I ]  Darboux G 1901 Arch. Neerlnnd 6 371 
[2] Whittaker E T 1937 Analytical Dynamics of Portieles and Rigid Bodies (Cambridge: Cambridge 

[3] Dorizzi B, Grammatikos B and Ramani A 1983 J. Math. Phys. 24 2282 

[4] Hietarinla J 1987 Phys. Rev. 147 87 
[5] Holt C R 1982 J. Math. Phys. 23 (6) 1037 

University Press) p 332 

Ankiewicz A and Pask C 1983 J. Phys. A :  Math. Gen. 16 4203 

Inoremtzev V I 1983 Phys. Lert. 98A 316 (Inazemtzev derives certain non-trivial solutions with the 
coefficients A, B, C, E of the third-order powers in i, j in the expression for the cubic integral 
depending on the position coordinates x, y rather than being mere constants, as is the case with 
most of the examples available in the literature.) 



ZD integrable poieniials with quartic invariants 3351 

161 Kaushal R S, Mishra S C and Tripathy K C 1985 1. Moth. Phyr. 26 420 (The results of this paper are 
linked to the results obtained by Holt [5] for third-order invariants and all the examples treated are 
of the third order.) 

[7] Fokas A S and Lagerstrh P A  1980 I. Moth. Anal. Appl. 74 325 
[8] Fordy A, Wojcienchawski S and Marchall I 1986 Phys. Lett. 113 395 
[9] Fordy A 1983 Phys. Lett. 91A 

[ I O ]  Grammalicas E, Doriui B and Ramani A 1983 I. Math. Phys. 24 2289 
For quartic integrals associated with polynomial potentials of degree 5 or less see: 
Hietarinta J 1983 Phys Lett. 96A 273 

[ I l l  Leach G L 1986 1. Math. Phys. 27 ( I )  153 
Thompson G 1984 I. Math. Phys. 25 3474 
Sen T 1987 Phys. Lett. 122.4 100 

[I21 Sen T I987 1. Moth. Phys. 28 2841 
[I31 Evans N W 1990 1. Math. Phys. 31 600 

[I41 Bozis G 1989 1. Phys. A: Moth. Gen. 22 1759 
Bois G 1982 Celestial Mech. 28 367 


